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Exploiting the density functional theory, we calculate the free energy landscape �FEL� of the hard sphere
glass in three dimensions. From the FEL, we estimate the number of the particles in the cooperatively rear-
ranging region �CRR�. We find that the density dependence of the number of the particles in the CRR is
expressed as a power law function of the density. Analyzing the relaxation process in the CRR, we also find
that the string motion is the elementary process for the structural relaxation, which leads to the natural
definition of the simultaneously rearranging region as the particles displaced in the string motion.
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I. INTRODUCTION

Understanding of the glass transition has amazingly ad-
vanced in last two decades because of intensive theoretical,
experimental and computational studies �1–6�. Among sev-
eral views for the glass transition, the free energy landscape
�FEL� picture �7–9� provides a unified understanding of the
characteristics of the glass transition. The FEL is a function
of a particle configuration �Ri� and is given by the free en-
ergy calculated from the phase space around �Ri� �8,9�. The
system is assumed to move on the FEL which has many
basins near Tg. Here, we refer to a basin as a region in which
all configurations are relaxed to the same minimum �3�. The
FEL picture provides a phenomenological understanding of
the dynamical properites �10–14� and the specific heat
anomaly �15–19� near Tg. It is, therefore, important to con-
struct explicitly the FEL using the microscopic Hamiltonian
in order to proceed to quantitative analysis of the glass tran-
sition. In this paper, we construct the FEL of the hard sphere
glass in three dimensions with the thermodynanic potential
of the density functional theory �7�.

In addition to the FEL, the cooperatively rearranging re-
gion �CRR� proposed by Adam and Gibbs �20� is also an
important concept to understand the glass transition. Adam
and Gibbs �20� have succeeded in describing the Vogel-
Fulcher temperature dependence of the shear viscosity
��T� �21,22�. In their theory, the structural relaxation is
caused by the rearrangement of particles in the CRR �20�.
The number of the particles in the CRR NCRR increases as
the temperature is reduced toward Tg. The Vogel-Fulcher be-
havior is attributed to the temperature dependence of
NCRR�T�. With NCRR�T�, ��T� can be expressed ��T�
�exp�NCRR�T��E / �kBT��, where �E is the activation energy
for a particle, assumed to be independent of the temperature
T. Because NCRR�T� increases as T is reduced, ��T� deviates
from the Arrhenius temperature dependence. In order to test
their theory, it is important to give a microscopic definition
of the CRR and to find its dependence on the parameters
such as the temperature and the density. In view of the suc-
cess of the FEL picture, it is necessary to relate the CRR to
the structure of the FEL in order to give a microscopic defi-
nition of the CRR.

In the previous papers �7,8�, we showed that a micro-
scopic definition of the CRR naturally emerges from the
structure of the FEL. In the Adam-Gibbs theory, the struc-
tural relaxation is assumed to be caused by the rearrange-
ment of particles in the CRR �20�. In the FEL picture, on the
other hand, the structural relaxation corresponds to the tran-
sition from one of the basins to the adjacent basin �7–9�. The
number of the particles needed for the transition to the adja-
cent basin is not the all particles in the system but a several
particles. These particles are thus considered as those in the
CRR proposed by Adam and Gibbs �20�. These particles are
also those displaced cooperatively at the excited state be-
tween the two adjacent basins.

From the structure of the FEL, we also proposed a new
rearranging region, the simultaneously rearranging region
�SRR� which is the difference between two adjacent basins
�7,8�. The difference between these two basins is given by
the position of a few particles at the local minima. The ex-
change of position of these particles brings the representative
point from one basin to the other.

In order to discuss the validity of the Adam and Gibbs
theory, thus, it is desirable to estimate NCRR from the FEL. In
this paper, we propose a method to estimate NCRR from the
FEL. We show that one can estimate NCRR by calculating the
FEL for the particles confined in a spherical shell of fixed
particles. In order to demonstrate the usefulness of the
method, we study NCRR of the hard sphere glass in three
dimensions. We will obtain the density dependence of NCRR.
We also investigate the structural relaxation process in the
CRR. We show that the string motion in which several par-
ticles displace like a billiard is the elementary process of the
structural relaxation.

We organize this paper as follows: We first present a
method to calculate the FEL with the thermodynamic poten-
tial of the density functional theory in Secs. II and III. A
method to estimate NCRR is given in Sec. IV. In Sec. V, we
show the FEL, SRR, density dependence of NCRR, and the
structural relaxation process in the CRR. Summary is given
in Sec. VI.

II. CONSTRUCTION OF THE FREE ENERGY
LANDSCAPE

In the previous paper �7�, we proposed that the free en-
ergy as a function of �Ri� can be obtained with the thermo-*t-yoshidome@iae.kyoto-u.ac.jp
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dynamic potential of the density functional theory �23–27�.
In this theory, the grand potential ����r�� is treated as a
functional of the density field ��r�. In order to express
����r�� as a function of �Ri�, we employ a sum of Gaussians
as the density field �24,26�:

�G�r� = ��

�
�3/2

	
i

exp�− ��r − Ri�2� . �1�

Here � and Ri are the degree of the spread of the density
distribution and the average position of the ith particle, re-
spectively. The density field �1� means that the distribution of
the motion around �Ri� is approximated by Gaussian func-
tions. Namely, the motion within 
r−Ri
�1/�� is coarse-
grained by �. With Eq. �1�, ����r�� becomes a function of �
and �Ri�:

���,�Ri�� � ���G�r�� . �2�

We use this grand potential for calculation of the FEL �7,8�.

III. RAMAKRISHNAN AND YUSSOFF FREE ENERGY
FUNCTIONAL

We employ the free energy functional developed by Ra-
makrishnan and Yussoff for ����r�� �28,29�. This free en-
ergy functional has been used for the study of the liquid-
crystal transition �26,30� and the glass transition �31–40� of
the hard sphere system. In this section, we explain their ex-
pression of the free energy functional briefly. Detail is ex-
plained in the reviews of the density functional theory
�24,26,27�.

One can first obtain the exact free energy functional for an
ideal gas �id���r��. Here, the ideal gas means that the Hamil-
tonian HN is given by HN=K, where K is the kinetic energy.
The free energy functional for the ideal gas is represented by

�id���r�� = kBT dr��r��ln���r�	3� − 1� + 
 dr��r� ,

�3�

where 	 is the thermal de Broglie wavelength and 
 is the
chemical potential.

In order to obtain the free energy functional for the objec-
tive system, Ramakrishnan and Yussouff �28,29� expanded
����r����id���r��−����r�� in a functional Taylor series
about the uniform density �̄� 1

V �dr��r�. It is important to
expand not the full free energy functional ����r�� but only
����r��. This ensures that �id���r�� is treated to all orders in
the density. Expanding ����r�� in a functional Taylor series
about �̄, ����r�� becomes

����r�� = ���̄� + 	
n=1

�

kBT dr1 ¯ drncn�r1 ¯ rn�

���r1� ¯ ���rn� . �4�

Here, ���r�=��r�− �̄, and cn�r1¯rn� is the nth direct corre-
lation function at the uniform density �̄, which is defined by

cn�r1 ¯ rn� �
��n����

���r1� ¯ ���rn�
. �5�

Thus, ����r�� becomes

����r�� = �id���r�� − ���̄� − 	
n=1

�

kBT

 dr1 ¯ drncn�r1 ¯ rn����r1� ¯ ���rn� .

�6�

By using Eq. �6�, the difference between the grand potential
of the crystal and that of liquid can be obtained

������r�� � �����r�� − ����̄� = 
V

dr��r�ln���r�
�̄
�

−
1

2


V

dr1
V

dr2c2�
r1 − r2
����r1� − �̄�

���r2� − �̄� , �7�

where the expansion is truncated in the second order. In ad-
dition, since one can shown that c1 is constant �24,27�, the
first order of the expansion becomes 0. The direct correlation
function c2�r� can be calculated with the equilibrium liquid
theory �23�. We use the Percus-Yevick approximation for the
direct correlation function of the hard sphere �23�.

IV. THE CRR OF THE HARD SPHERE GLASS

One can estimate NCRR by investigating whether the tran-
sition to the adjacent basin takes place or not when several
particles in the system are fixed. Consider the two adjacent
basins in the FEL. The number of the particles for transition
to the adjacent basin requires cooperative motion of the par-
ticles in the CRR. Hence even if the particles which do not
displace during the transition to the adjacent basin are fixed,
the system can also transit to the adjacent basin. The number
of the particles in the CRR NCRR corresponds to the smallest
number of the unfixed particles. In the following, we first
present the procedure for obtaining the configuration of the
hard sphere. Then the method to estimate NCRR is explained.

We first prepare the random packing of hard sphere made
by the infinitesimal gravity protocol, whose algorithm is de-
scribed in Refs. �41,42�. The number density �0�3 is 1.04,
where � is the diameter of the hard sphere. Hereafter, the
position of the particles at �0�3=1.04 is denoted by �Ri

0�. We
obtain the position of the particles �Ri� at the objective den-
sity ��3 as follows:

Ri = ��0�3

��3 �Ri
0. �8�

When we estimate NCRR, we first constrain the particles in
the spherical shell made by fixing the particles �Fig. 1�, as-
suming that the shape of the CRR is a sphere. We first set the
inner diameter of the spherical shell to 6�. In order to obtain
�Ri� at the minimum in the basin, the particles in the confin-
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ing area are relaxed to minimize ��� , �Ri�� in the �Ri� space.
We exploit the steepest decent method for minimization,
whose algorithm is explained in the Appendix.

In order to estimate NCRR, we calculate the FEL for a
process in which we force to displace a particle A which is
near the center of the spherical shell �Fig. 1�. Other particle’s
�Ri� are relaxed to minimize ��� , �Ri�� in the �Ri� space
with the position of the particle A fixed. Then we judge
whether the transition to the adjacent basin takes place or not
with the procedure explained later. If the transition takes
place, we decrease the size of the confining area and calcu-
late the FEL in the new confining area. As the number of
particles in the confined area Ntrap is reduced, the transition
to the adjacent basin cannot take place at a certain critical
number. This critical number is NCRR.

We judge whether the transition to the adjacent basin
takes place or not with the following procedure. We first
relax �Ri� at each point of the calculated FEL to the mini-
mum in the basin. Then we compare the obtained �Ri� with
that at the initial state. Hereafter we use �Ri

min� and �Ri
initial�

for �Ri� at the minimum in the basin and that at the initial
state, respectively. If �Ri

min� for all the point of the calculated
FEL are coincide with �Ri

initial�, there is one basin which
corresponds to the initial basin, and otherwise, more than
two basins exist. In the latter case, transition to the adjacent
basin takes place.

Finally, since the positions of the particles are distributed
around �Ri� with the width of � /��, we assume that the two
particles do not overlap when 
Ri−R j
��−� /��. If one can
find only the initial basin by displacing the particle A as far
as possible, the transition to the adjacent basin does not take
place.

V. RESULTS

In principle, one can calculate the FEL in � and �Ri�
space with the grand potential �2�. The shape of the FEL
depends on �. In the limit of �→0 where the degree of the
coarse-graining 1/�� becomes �, the FEL becomes uniform,
and thus �G�r� �1� is independent of �R�. In the limit of �
→� where the degree of the coarse graining 1/�� becomes
0, on the other hand, the FEL becomes the same as the po-
tential energy landscape.

In the present paper, we show the FEL at a certain value
of �, ��2=36. The corresponding root mean square dis-

placement of the particle around the center of the Gaussian
function is 1 /���0.17�. This value is close to the root
mean square displacement of the particle around the FCC
lattice at the liquid-crystal transition point, which is approxi-
mately 0.19� �30�.

A. Free energy landscape and SRR

Figure 2 shows the FEL as a function of the displacement
of the forced particle A, �RA, at ��3=0.963. The number of
the particles in the spherical shell Ntrap is set to 18. As the
particle A is forced to displace, ��� , �Ri�� increases. For
1.05���RA�1.12�, ��� , �Ri�� is decreased approximately
0.3kBT. Then the abrupt decrement of ��� , �Ri�� takes place
at �RA=1.13�.

The abrupt decrement of ��� , �Ri�� at �RA=1.13� is
caused by the large displacement of particle labeled by B in
Fig. 3. When �RA�1.12�, all particles except for the par-
ticle A displace short distance. However, at �RA=1.13�, the
particle B displaces significantly. Other particles displace
short distance. The large displacement of the particle B is
caused by the steepest decent method. When we calculate the
FEL, �Ri� are relaxed to minimize ��� , �Ri�� in the �Ri�
space with the position of the forced particle A fixed. In the
case of �RA�1.12�, since the system is near the local mini-
mum, the particle B displaces short distance due to the relax-
ation. �see Fig. 4�a��. At �RA=1.13�, on the other hand,
since the system is far from the local minimum, the particle
B displaces long distance due to the relaxation �Fig. 4�. Thus,
the large displacement of the particle B occurs at �RA
=1.13�.

By relaxing �Ri� at each point of the calculated FEL to the
minimum in the basin, we find that in the case of �RA
�1.12�, the system belongs to the initial basin �basin 1�.
Otherwise, the system belongs to the different basin �basin
2�. The configurations at the minimum of basin 1 and basin 2
are shown in Fig. 5. By relaxing �Ri� at �RA�1.12�, the
particle B goes to the position of the particle A at �RA=0. In
addition, the particle A goes to the position of the particle B

A

FIG. 1. A schematic representation of the model under consid-
eration. A is the particle which we force to move. The black par-
ticles are fixed. 0 0.5 1

0

10

20

30

40

∆

βΩ
−β

Ω
0

RA

basin 1 basin 2

FIG. 2. The FEL for ��3=0.963, Ntrap=18, and ��2=36. The
horizontal axis is the displacement of the forced particle. The ver-
tical axis is the difference between � at �RA and � at the initial
particle configuration.
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at �RA=0. Namely, the configuration at the minimum of ba-
sin 2 is that the two particles are exchanged mutually from
the configuration at the minimum of basin 1. The positions of
other particles in basin 2 coincide with those in basin 1.
Thus, the simultaneously rearranging region �SRR� consists
of 2 particles. Since there are two basins, the transition to the
adjacent basin occurs at Ntrap=18.

In order to estimate the lower limit of NCRR at ��3

=0.963, we reduce the confining area and calculate the FEL.
Figure 6 shows the FEL for Ntrap=9 and ��3=0.963. Here,
we calculate the FEL within �R�0.35, because the assump-
tion 
Ri−R j 
 ��−� /�� is not satisfied in the case of �R
�0.36. By relaxing �Ri� at each point of the calculated FEL

to the minimum in the basin, we find only the initial basin.
Thus, the transition to the adjacent basin does not occur at
Ntrap=9. Namely, NCRR is larger than 9, and thus NCRR is
between 10 and 18 at ��3=0.963.

B. Density dependence of the number of the particles
in the CRR

Figure 7 shows the density dependence of NCRR at ��2

=36. The number of the particles in the CRR NCRR is in-
creased as the density is raised. It reaches approximately 50
at ��3=1.12. The density dependence of NCRR can be ex-
pressed by the power law �see Fig. 7�. By extrapolating to
the high density with the power law fit, we find that NCRR

FIG. 3. The structural relaxation of the particles in the confining
area. The points are the calculated result of the trajectories of the
particles. Dotted spheres represent the particles at �RA=0, and solid
spheres represent the particles at �RA=1.36�. The arrows mark the
paths of the positions of two particles. A is the particle which we
force to displace.

βΩ

RB

βΩ

RB

(a)

(b)

FIG. 4. The schematic representations of the relaxation to the
minimum of ��� , �Ri�� in the �Ri� space. �a� at �RA�1.12� in Fig.
2, and �b� at �RA=1.13� in Fig. 2. We represent the FEL in one
dimension for simplicity. The system relaxes to the minimum along
the arrow.

(a)

(b)

FIG. 5. The configurations at the minimum in the basin 1 �a� and
that at the minimum in the basin 2 �b�. Points show �Ri� of par-
ticles. Two spheres A, B are the particles exchanged mutually their
positions.

0 0.5 1
0

10

20

30

40

∆
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−β

Ω
0

RA

basin 1

FIG. 6. The FEL for ��3=0.963 and Ntrap=9. The horizontal
axis and vertical axis are the same as those in Fig. 2.
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becomes infinity at ��3=1.3. The exponent of the power law
is 1.7.

According to the Adam and Gibbs theory �20�, NCRR be-
comes infinity at the Vogel-Fulcher density. Thus, ��3=1.3
corresponds to the Vogel-Fulcher density for the hard sphere
glass. The corresponding packing fraction is 0.68, which cor-
responds to the random closed packing �RCP=0.64–0.68.
This result suggests that the Vogel-Fulcher density corre-
sponds to the random closed packing.

C. Structural relaxation in the CRR: String motion

The elementary process of structural relaxation takes
place within the CRR because the particles in the CRR are
needed for the structural relaxation. As explained in Sec. I,
the structural relaxation corresponds to the transition to the
adjacent basin in the FEL picture. In order to clarify the
elementary process of the structural relaxation, thus, we in-
vestigate the structural relaxation in the CRR of Fig. 3.

From Fig. 3, we find that the structural relaxation is pro-
duced by large displacement of two particles. Two particles

displace similar to billiard balls, and the exchanges of their
position take place. This motion is a string motion. The par-
ticles displaced in the string motion are those in the SRR.
Other particles keep their relative positions.

The string motion occurs for other densities. In Fig. 8, we
first show the FEL for Ntrap=32, which is the upper limit of
NCRR at ��3=1.06 �see Fig. 7�. The qualitative behavior of
the FEL is the same as the FEL in Fig. 2, such as the increas-
ing of ��� , �Ri�� and the abrupt decrease of ��� , �Ri��. The
transition to the adjacent basin occurs at �RA=0.92�. Figure
9 shows the structural relaxation during the change of
��� , �Ri�� in Fig. 8. The exchange of three particles takes
place. We also confirmed that the qualitative behavior of the
FEL and the structural relaxation takes place for other den-
sities.

The string motion also occurs for other �. We first show
the the FEL for Ntrap=10, which is the upper limit of NCRR at
��2=3 and ��3=0.963. This value of ��2 is close to that at
the liquid-amorphous solid transition point �43�. The qualita-
tive behavior of the FEL is the same as the FELs in Figs. 2
and 8. The transition to the adjacent basin occurs at �RA
=0.62�. Figure 11 shows the structural relaxation during the
change of ��� , �Ri�� in Fig. 10. The exchange of five par-
ticles takes place.

The string motion has been observed in molecular dynam-
ics �MD� simulations �44–47�. For example, Miyagawa et al.
observed simultaneous exchange of four particles in the MD
simulation of three-dimensional �3D� binary soft-sphere mix-
ture �44�. The structural relaxation in the CRR is qualita-
tively same as that observed by Miyagawa et al. �44�. How-
ever, Glotzer et al. have observed the string motion in quasi-
one-dimensional paths �45–47�, which is different behavior
from our result of the string motion. The string motion in
quasi-one-dimensional paths is expected to be obtained by
changing the shape of the confining area such as the cuboid
cell.

VI. SUMMARY AND DISCUSSION

In this paper, we have studied the FEL for hard sphere
glass in three dimensions by the density functional theory.

0 0.5 1
0

25

50

∆

βΩ
−β

Ω
0

RA

basin 1 basin 2

FIG. 8. The FEL at ��3=1.06, Ntrap=32, and ��2=36. The hori-
zontal axis and vertical axis are same as those in Fig. 2.

FIG. 9. The structural relaxation of the particles in the confining
area. The points are the calculated result of the trajectories of the
particles. Dotted spheres represent the partices at �RA=0, and solid
spheres represent the particles at �RA=1.0�. The arrows mark the
paths of three particles A, B, and C. A is the particle which we
force to displace.

0.9 1 1.1
0

20

40

60

ρσ3

N
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R

2.5/(1.3−ρσ3)1.7

FIG. 7. The density dependence of the size of the CRR, NCRR

for the hard sphere glass at ��2=36. The horizontal axis is the
density, and the vertical axis is NCRR. For each density, the lower
and upper limit of NCRR are connected by the bar. The solid line
represents the power-law fit.
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We have obtained three results: FEL, number of the particles
in the CRR NCRR, and the elementary process of the struc-
tural relaxation.

We have first obtained the FEL as a function of the dis-
placement of the particle �RA. To this end, we calculate the
FEL in which we force to displace a selected particle which
is near the center of the spherical shell �Fig. 1�. Other parti-
cle’s �Ri� are relaxed to minimize ��� , �Ri�� in the �Ri�
space with the position of the forced particle fixed. The FEL
is increased as the selected particle is displaced. Then the
abrupt decrease of ��� , �Ri�� occurs by the large displace-
ment of the several particles. When the abrupt decrease of
��� , �Ri�� occurs, the transition to the adjacent basin occurs.

When we calculate the FEL, we have set ��2=36 corre-
sponding to the mean squared displacement of the particle in
an fcc structure at the melting point. Although the value of
��2 should be determined from the first principle, there are
no method to determine the value of ��2 at present. We do
not consider that we have to employ the value of ��2 at the
free energy minimum �31,37–40�. However, the aim of the
present study is to demonstrate that one can calculate the
FEL and the CRR of the hard sphere glass with the density
functional theory. Thus, we employ ��2=36 for simplicity. It
is the future study to determine the value of ��2 from the
first principle.

In the present paper, we have used the the Percus-Yevick
approximation for the direct correlation function �23�. It is,
however, well known that the Percus-Yevick approximation
is less accurate at high densities for hard sphere system �23�.
For this reason, the Verlet-Weis correction to the Percus-
Yevick approximation has been used at high density �52,53�.
However, we confirmed that the difference between the free
energy calculated with the Percus-Yevick approximation and
that calculated with the Verlet-Weis correction is small at
��2=36. Thus we expect that the present results do not
change if we employ the Verlet-Weis correction of the
Percus-Yevick approximation.

By decreasing the size of the confining area, we have
estimated NCRR. By fitting the density dependence of NCRR
with power law function of the density, we have found that
the Vogel-Fulcher density is ��3=1.3. The corresponding
packing fraction is 0.68, which corresponds to the random
close packing fraction. Thus, the Vogel-Fulcher density cor-
responds to the packing fraction of the random close
packing.

According to the theoretical and numerical studies for the
hard spheres in three dimensions �49–51�, there is a Kauz-
man packing fraction between 0.58 and 0.62. This packing
fraction is lower than our result, 0.68. We believe that our
result is more natural than others, because our result indi-
cates that the Kauzmann packing fraction corresponds to the
random packing fraction. However, since the discrepancy
might come from the value of ��2, we need to check the
present results by calculating the FEL and CRR with the
value of ��2 obtained from the first principle in the future.

The present results are considered to be independent of
the algorithm chosen. In the present paper, we have em-
ployed the infinitesimal gravity protocol to prepare the ran-
dom packing of hard sphere �41,42�. There are, however,
several algorithms to generate random packing of hard
sphere �54–56�. If the structures of the random packing of
the hard sphere depend on the algorithm chosen, the size of
the CRR would change. Thus, we compare the pair correla-
tion function g�r� obtained from each algorithm and our al-
gorithm. The minor difference is found in the shape of the
second peak. We expect that the present results do not
change from such a minor difference and thus, we consider
that the present results do not depend on the algorithm cho-
sen.

We have found that the string motion is the elementary
process for structural relaxation. This motion is also ob-
served in the MD simulations �44–48�. We have also found
that the particles displaced in the string motion correspond to
the particles in the SRR.

The study with another shape of the confining area is the
future problem. The string motion which is similar to ring
motion �Figs. 3, 9, and 11� might be changed if the another
shape of the confining area is employed. For example, if we
constrain the particles in the ellipsoid with large aspect rate,
the string motion in quasi-one-dimensional paths would be
obtained. In the future we will study the FEL, the CRR, and
the string motion with another shape of the confining area.
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ing area. The points are the calculated result of the trajectories of
the particles. Dotted spheres represent the particles at �RA=0, and
solid spheres represent the particles at �RA=1.0�. The arrows mark
the paths of five particles is shown by arrows. “A” is the particle
which we force to displace.
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APPENDIX

In relaxation of particles, we employ the steepest
decent method. With this method, one can relax the particles
to the minimum of ��� , �Ri�� with the positions of particle A
fixed. Suppose we have a configuration �Ri

old�
= �x1

old ,y1
old ,z1

old , . . . ,zN
old�. With the gradient of ��� , �Ri��

with respect to �Ri�, we relax the ith particle as follows:

xi
new = xi

old − ��
������,�Ri���

�xi
�

xi=xi
old

. �A1�

Here, xi
new is the position of the ith particle in the x direction

after the relaxation �A1�. In addition, � is the constant small
value. The relaxation �A1� is also employed both in the y and
z directions. When the relaxation �A1� is performed all par-
ticles except for particle A, one can obtain a configuration
�Ri

new�= �x1
new,y1

new,z1
new, . . . ,zN

new�. By substitute �Ri
new� into

�Ri
old�, we repeat the relaxation �A1� until the particles are

relaxed to the minimum of ��� , �Ri��.
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